\qquad
Date: \qquad

Mini-Test 2-1: Pythagorean Theorem and Similar Triangles

$\mathrm{K}: \frac{}{6}$	$\mathrm{C}: \frac{}{4}$	$\mathrm{~A}: \frac{}{12}$

Instructions: Show your work. Marks will be deducted for improper form.

Knowledge: 6 Marks

1. Examine the following triangles carefully.

(a) Are these similar triangles? Justify your answer. [K: 4]
$\frac{X Y}{M N}=\frac{8}{12}=\frac{2}{3}$ or $0.67 \quad$ Since $\frac{X Y}{M N}=\frac{Y Z}{N P}=\frac{X Z}{M P}=\frac{2}{3}$, the two triangles are similar.
$\frac{Y Z}{N P}=\frac{4}{6}=\frac{2}{3}$ or 0.67
$\frac{X Z}{M P}=\frac{6}{9}=\frac{2}{3}$ or 0.67
(b) If these are similar triangles, write the similar triangle statement? [K: 2]
$\triangle X Y Z \sim \Delta M N P$

Communication: 4 Marks

Write your answers in complete English sentences; otherwise, marks will be deducted.
2. Describe in words how you would determine whether the measures $4 \mathrm{~cm}, 8 \mathrm{~cm}$, and 12 cm can form a right triangle. (Hint: Do not show steps of calculations.) [C: 4]

I would use the Pythagorean theorem $c^{2}=a^{2}+b^{2}$ to determine whether the given measures can form a right triangle. Since 12 cm is the longest measure, it should be the measure of the hypotenuse, $c .4 \mathrm{~cm}$ and 8 cm should be the measures of the two legs, a and
b. Let $c=12, a=4$ and $b=8$. Check if 12^{2} equals the sum of 4^{2} and 8^{2}. If they do, the measures can form a right triangle. If they don't equal, the measures cannot form a right triangle.
\qquad
\qquad

Application: 12 Marks

3. If $\triangle O P Q \sim \Delta O T R$,

(a) Find the measure of $\angle O Q P, \angle P O Q, \angle R O T$, and $\angle O T R$, to the nearest degree. [A: 4]

$$
\begin{aligned}
& \angle O Q P=\angle O R T=50^{\circ} \\
& \angle P O Q=\angle R O T=180^{\circ}-42^{\circ}-50^{\circ}=88^{\circ} \\
& \angle O T R=\angle Q P O=42^{\circ}
\end{aligned}
$$

(b) Find the length of sides q and t, to the nearest centimetres. [A: 5]

$$
\begin{aligned}
& \frac{O P}{O T}=\frac{P Q}{T R}=\frac{O Q}{O R} \\
& \frac{q}{12}=\frac{8}{16} \\
& \frac{8}{16}=\frac{4}{t} \\
& \frac{q}{12}=\frac{8}{16}=\frac{4}{t} \\
& q=\frac{8 \times 12}{16} \\
& t=\frac{4 \times 16}{8} \\
& q=6 \mathrm{~cm} \\
& t=8 \mathrm{~cm}
\end{aligned}
$$

4. A school is erecting a new flagpole. The pole is supported by a $13-\mathrm{m}$ guy wire anchored 5 m from the base of a pole. Find the height of the pole. (Hint: Draw a diagram.) [A: 3]

$$
\begin{aligned}
\text { Hypotenuse } & =13 \mathrm{~cm} \\
c^{2} & =a^{2}+b^{2} \\
13^{2} & =5^{2}+b^{2} \\
13^{2}-5^{2} & =m^{2} \\
169-25 & =m^{2} \\
144 & =m^{2} \\
\sqrt{144} & =\sqrt{m^{2}} \\
12 \mathbf{m} & =m
\end{aligned}
$$

The height of the pole is 12 m .

