$\qquad$

## Measurement Unit Conversions Using Conversion Factors

1. One kilogram is approximately 2.2 pounds. A man weighs 150 pounds. How many kilograms does he weigh?
Conversion Factor: $\quad 1 \mathrm{~kg}=2.2 \mathrm{lb}$

$$
\frac{1 \mathrm{~kg}}{2.2 \mathrm{lb}}=1=\frac{2.2 \mathrm{lb}}{1 \mathrm{~kg}}
$$

Solution:

$$
\begin{aligned}
& 150 \not 86 \times \frac{1 \mathrm{~kg}}{2.2 \not \mathrm{~b}} \\
= & \frac{150}{2.2} \mathrm{~kg} \\
= & 68.18 \mathrm{~kg}
\end{aligned}
$$

The man weighs 68.18 kg .
2. There are 12 inches in a foot. A man is 5 and a half feet tall. How any inches tall is he?

Conversion Factor: $1 \mathrm{ft}=12$ in

$$
\frac{1 \mathrm{ft}}{12 \mathrm{in}}=1=\frac{12 \mathrm{in}}{1 \mathrm{ft}}
$$

Solution:

$$
\begin{aligned}
& 5.5 \mathrm{f} \times \frac{12 \mathrm{in}}{1 \mathrm{ft}} \\
= & 5.5 \times 12 \mathrm{in} \\
= & 66 \mathrm{in}
\end{aligned}
$$

The man is 66 inches tall.
3. A pint is 2 cups. 1 gallon is 16 cups. A pint is 16 fluid ounces. How many fluid ounces are in 6 gallons?
Conversion Factor: $\frac{1 \mathrm{pt}}{2 \mathrm{cups}}=1=\frac{2 \mathrm{cups}}{1 \mathrm{pt}} \quad \frac{1 \mathrm{gal}}{16 \mathrm{cups}}=1=\frac{16 \mathrm{cups}}{1 \mathrm{gal}} \quad \frac{1 \mathrm{pt}}{16 \mathrm{fl} . \mathrm{oz} .}=1=\frac{16 \mathrm{fl} . \mathrm{oz} .}{1 \mathrm{pt}}$
Solution:

$$
\begin{aligned}
& 6 \mathrm{~g} / \mathrm{ll} \times \frac{16 \mathrm{cylps}}{1 \text { ghl }} \times \frac{1 \mathrm{pl}}{2 \mathrm{cyps}} \times \frac{16 \mathrm{fl} . \mathrm{oz} .}{1 \mathrm{pl}} \\
= & \frac{6 \times 16 \times 16}{2} \\
= & 768 \mathrm{fl} . \mathrm{oz}
\end{aligned}
$$

There are 768 fl.oz. in 6 gallons.

Name: $\qquad$
Date: $\qquad$ Conversions
4. Convert the following measurements. Round to the nearest tenth if needed.
(a) 68 cups $=$ ? gallons
(b) 3 qt $=$ ? fl.oz.
(c) $5000 \mathrm{~g}=?$ metric ton $(1$ ton $=1000 \mathrm{~kg})$
(d) $12 \mathrm{oz} .=$ ? $\mathrm{kg}(1000 \mathrm{~kg}=2204 \mathrm{lb})$
(e) $2 \mathrm{miles} / \mathrm{h}=$ ? $\mathrm{km} / \mathrm{h} \quad(1 \mathrm{mile}=1.61 \mathrm{~km})$
(f) $10 \mathrm{~km}=$ ? miles
5. Convert temperatures using the following formulas. Round to nearest tenth if needed.

$$
F^{\circ}=1.8 \times C^{\circ}+32 \quad C^{\circ}=\left(F^{\circ}-32\right) \times 5.5
$$

(a) $37 C^{\circ}=$ ? $F^{\circ}$
(b) $100 F^{\circ}=? C^{\circ}$

