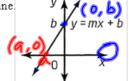
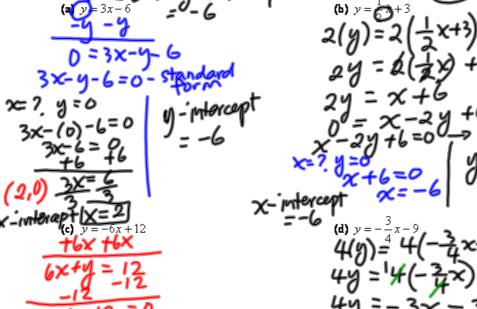
AChor/MFM2P

Name: ______
Date:

Worksheet 6-1: Standard Form of Linear Equations


Forms of Linear Equations

Linear equations can be expressed in many different forms. The two common forms are:


- (i) Standard Form: Ax + By + C = 0, where A, B, C are integers. A and B are not both zero, A is positive.
- (ii) Slope-Intercept Form: y = mx + b

where **m** is the slope of the line, and **b** is the **y**-intercept of the graph of the line.

The y-intercept "b" is the y-coordinate of the point at which the line cuts the y-axis. It is the value of the dependent variable "y" when the independent variable "x" is 0.

1. Write each linear equation in standard form, and state its x- and y-intersepts.

AChor/MFM2P

2. Write each linear equation in slope-intercept form, and state its slope and y-intercept.

Hint: Solve for y. Keep y positive.

Shortcut: $y = -\frac{A}{B}x - \frac{C}{B}$, $m = -\frac{A}{B}$ and $b = -\frac{C}{B}$

(a)
$$4x - 6y - 8 = 0$$

+5y +5y

 $4x - 8 = 8y$

$$\frac{4}{5}x - \frac{8}{5} = \frac{4}{5}x - \frac{8}{5}$$

$$y = \frac{4}{5}x - \frac{8}{5}$$
(c) $9x - 9 + 6 = 0$

$$m = \frac{4}{5}$$

$$b = -\frac{8}{5}$$

(b)
$$x - 3y + 9 = 0$$

$$\frac{13y + 3y}{1 \times 49} = \frac{1}{3}y$$

$$\frac{1 \times 49}{3} = \frac{3}{3}y$$

$$y = \frac{1}{3} \times 43$$

$$y = \frac{1}{3} \times 43$$

$$y = \frac{1}{3} \times 43$$

(d)
$$4x - 2y - 1 = 0$$

(e)
$$3x + y = 0$$

(f)
$$6x + 3y = 12$$

Answers: 1. (a) 3x - y - 6 = 0, 2, -6, (b) x - 2y + 6 = 0, -6, 3, (c) 6x + y - 12 = 0, 2, 12, (d) 3x + 4y + 36 = 0, -12, -9

2. (a)
$$y = \frac{4}{5}x - \frac{8}{5}$$
, (b) $y = \frac{1}{3}x + 3$, (c) $y = 3x + 2$, (d) $y = 2x - \frac{1}{2}$, (e) $y = -3x$, (f) $y = -2x + 4$;