Name	:	 	
Date:			

Worksheet 4-4: Graphing a Linear Relation (Straight Line)

Three Ways to Graph a Linear Relation:

- (i) Graph by Table of Value (Find corresponding *y*-values by substituting chosen *x*-values into equation.)
- 1. Graph each line.
- (a) y = 2x 3

x	2x - 3 = y	(<i>x</i> , <i>y</i>)
0		
1		
2		

(b) y = -3x + 4

x	-3x + 4 = y	(x, y)
0		
1		
2		

(c)
$$y = \frac{1}{2}x + 1$$

x	$\frac{1}{2}x + 1 = y$	(<i>x</i> , <i>y</i>)
0		
2		
4		

****Why do we use 0, 2, and 4 for** *x* **instead of 0, 1 and 2?**

AChor/MFM2P

- (ii) Graph by Slope and y-Intercept (Start at y-intercept then move to the next point by rise and run.)
- 2. Graph each line by its slope and *y*-intercept.
- (a) **Graph** y = 2x 3.

(c) **Graph** y = -4x + 5.

(e) Graph y = 7

b =____, rise = ____, run = ____

(iii) Graph by x-and y-Intercepts (Plot the x- and y-intercepts of the graph and connect with a line.)

The x- and y-intercepts of a graph

The *x*-intercept of a graph is where the line crosses the *x*-axis. It is the *x*-value of the point (x, y) on the *x*-axis.

To find the *x*-intercept, we have to find that value of *x* where y = 0 because at *every* point on the *x*-axis, y = 0.

The *y*-intercept of a graph is where the line crosses the *y*-axis. It is the *y*-value of the point (x, y) on the *y*-axis.

To find the *y*-intercept, we have to find that value of *y* where x = 0 because at *every* point on the *y*-axis, x = 0.

3. State the *x*- and *y*-intercepts of the following graphs.

x-intercept = *y*-intercept = *x*-intercept =

y-intercept =

x-intercept =

x-intercept =

y-intercept =

y-intercept =

4. Graph each line by its *x*- and *y*-intercepts.

(a)
$$y = x - 4$$

x-intercept: when y = 0

y-intercept: when x = 0

(b) 3x + y = 6

x-intercept: when y = 0

y-intercept: when x = 0

AChor/MFM2P

(c)
$$y = \frac{1}{2}x - 3$$

Name:	
Date: _	w5 4-4

(d) y = -5

(e) x = 4

(f) 2x + y + 4 = 0

Answers: 3. (a) 1 and -2, (b) 2 and 3, (c) none and 3, (d) 2 and none; 4. (a) (4, 0) and (0, -4), (b) (2, 0) and (0, 6), (c) (6, 0) and (0, -3), (d) none and (0, -5), (e) (4, 0) and none, (f) (-2, 0) and (0, -4)