\qquad
\qquad

Worksheet 4-4: Graphing a Linear Relation (Straight Line)

Three Ways to Graph a Linear Relation:
(i) Graph by Table of Value (Find corresponding y-values by substituting chosen x-values into equation.)

1. Graph each line.
(a) $y=2 x-3$

\boldsymbol{x}	$2 x-3=y$	(x, y)
0		
1		
2		

(b) $y=-3 x+4$

x	$-3 x+4=y$	(x, y)
0		
1		
2		

(c) $y=\frac{1}{2} x+1$

x	$\frac{1}{2} x+1=y$	(x, y)
0		
2		
4		

**Why do we use 0,2 , and 4 for x instead of 0 , 1and 2 ?
\qquad
(ii) Graph by Slope and y-Intercept (Start at y-intercept then move to the next point by rise and run.)
2. Graph each line by its slope and y-intercept.
(a) Graph $y=2 x-3$.
$b=$ \qquad , rise = \qquad run $=$ \qquad

(c) Graph $y=-4 x+5$.
\qquad
$b=$, rise = run $=$

(e) Graph $y=7$
$b=$ \qquad , rise = \qquad run $=$ \qquad
(f) Graph $x=5$
$b=$ \qquad , rise $=$ \qquad , run = \qquad

\qquad
\qquad
(iii) Graph by \boldsymbol{x}-and \boldsymbol{y}-Intercepts (Plot the x - and y-intercepts of the graph and connect with a line.)

The x - and y-intercepts of a graph

The x-intercept of a graph is where the line crosses the x-axis. It is the \boldsymbol{x}-value of the point (x, y) on the x-axis.

To find the x-intercept, we have to find that value of x where $\boldsymbol{y}=\mathbf{0}$ because at every point on the x-axis, $y=0$.

The \boldsymbol{y}-intercept of a graph is where the line crosses the y-axis. It is the y-value of the point (x, y) on the y-axis.

To find the \boldsymbol{y}-intercept, we have to find that value of \boldsymbol{y} where $\boldsymbol{x}=\mathbf{0}$ because at every point on the y-axis, $x=0$.
3. State the x - and y-intercepts of the following graphs.
(a)

x-intercept $=$
y-intercept $=$

(b)
(d)

x-intercept $=$
y-intercept $=$

x-intercept $=$
y-intercept $=$
x-intercept $=$
y-intercept $=$
4. Graph each line by its x - and y-intercepts.
(a) $y=x-4$
(b) $3 x+y=6$

x-intercept:
when $y=0$
y-intercept: when $x=0$

x-intercept: when $y=0$
y-intercept: when $x=0$

AChor/MFM2P

(c) $y=\frac{1}{2} x-3$

Name: \qquad
(d) $y=-5$

(e) $x=4$

(f) $2 x+y+4=0$

Answers: 3. (a) 1 and -2 , (b) 2 and 3 , (c) none and 3 , (d) 2 and none; 4. (a) $(4,0)$ and $(0,-4)$, (b) $(2,0)$ and $(0,6)$,
(c) $(6,0)$ and $(0,-3)$, (d) none and $(0,-5)$, (e) $(4,0)$ and none, (f) $(-2,0)$ and $(0,-4)$

