\qquad
Date: \qquad
Practice Test 6: Linear Systems

Knowledge:

1. Solve the following system of linear equations graphically: $\begin{aligned} & -2 x+y=-3 \\ & y=3 x-2\end{aligned}$.[K: 8]

**The solution is:
2. Is $(-1,-1)$ the solution to the linear system: $\begin{aligned} & -x+2 y=-1 \\ & 2 x+y=2\end{aligned}$? [K: 5]

Answers: 1. The solution is $(-1,-5)$; 2. Use L.S.=R.S. Check, $(-1,-1)$ is not the solution.

AChor/MFM2P

Name: \qquad
Date: \qquad
3. Solve the following system of linear equations by substitution: $-5 x+y=-2$
**The solution is:
4. Solve the following system of linear equations by elimination: $\begin{aligned} & 3 x-2 y=2 \\ & -10 x+3 y=8\end{aligned}$.
[K: 8]
**The solution is:
Answers: 3. The solution is $(2,8) ; 4$. The solution is $(-2,-4)$.

AChor/MFM2P

\qquad

Communication:

Write your answers in FULL English sentences. [C: 1]
5. For the system of linear equations: $\begin{aligned} & x+3 y=-1 \\ & 3 x-2 y=8\end{aligned}$,
(a) describe in words the steps you follow to solve the system by graphing. [C: 4]
(b) describe in words the steps you follow to solve the system by substitution. [C: 4]
(c) describe in words the steps you follow to solve the system by elimination. [C: 6]
\qquad
Date: \qquad

Provide answer statements for the following questions. [C: 1]

6. A computer store manager knows that the fixed costs for the store are $\$ 8900$ per month and that the unit cost per computer is $\$ 850$. The store sells a computer for $\$ 1295$. The cost and revenue can be represented by the following equations:

Cost: $\quad d=8900+850 c$
Revenue: $\quad d=1295 c$
where c is the number of computers and d is an amount in dollars.
(a) How many computers does the store need to sell to break even? [A: 8]
(b) Supposed the fixed costs increase to $\$ 9790$. Now how many computers does the store need to sell to break even? [T: 8]

Answers: 6. (a) 20 computers, (b) Replace 8900 by 9790 then solve the equations, 22 computers
\qquad
Date: Test 6
7. A high school class is putting together a newsletter. The cost of design and colour copies is $\$ 200$ plus $75 \$$ per copy. The class plans to sell the newsletter for $\$ 1.25$.
(a) How many newsletters must be sold to break even? [A: 8]
(Hint: Create two linear equations using the information given. Don't forget the let statements.)
(b) How many newsletters must be sold to make a profit? [T: 2]
8. Isabella rode her motorcycle at constant speed. It took her 2 hours to travel 216 km with the wind behind her. The return trip took her 3 hours riding into the wind. Let s represent the speed of the motorcycle and w represent the speed of the wind. Write a linear system to represent this situation. (Hint: Distance $=$ time \times speed (T: 4]

Answers: 7. (a) d represents cost and revenue in dollars, n represents the number of copies made and sold, $C: d=200+0.75 n, R: d=1.25 n, 400$ copies, (b) more than 400 copies when revenue $>$ cost;
8. Distance $=$ time \times speed: $2(s+w)=216,3(s-w)=216$
\qquad
Date: \qquad Test 6
9. A bank teller has a total of 43 paper bills in fives and tens. The total value of the money is $\$ 340$. How many $\$ 5$ bills and how many $\$ 10$ bills does the bank teller have? [A: 8]
(Hint: Create two linear equations using the information given. Don't forget the let statements.)
10. Neil's little brother has a total of 8 cars and trucks to play with. For his birthday, he wants to double the number of cars he has. If he does, he will have a total of 11 cars and truck. Write a linear system to represent this situation. [T: 4]
11. Andy has a total of $\$ 6000$ to invest. He puts part of it in an investment yielding an 8% gain per year, and the rest in an investment yielding a 3% loss per year. At the end of one year, Andy made an overall gain of $\$ 260$. Write a linear system to represent this situation. [T: 4]

Answers: 9. $x=$ number of $\$ 5$ bills, $y=$ number of $\$ 10$ bills, $x+y=43,5 x+10 y=340,185$-dollar bills, 25 10-dollar bills; 10. $c=$ number of cars, $t=$ number of trucks, $c+t=8,2 c+t=11$;
11. $x=$ amount invested in 8% gain, $y=$ amount invested in 3% loss, $x=y=6000,0.08 x-0.03 y=260$

