Α.

Name:	
Date: _	

Worksheet 4-3: Properties of Linear Relations

Linear Relation as a Straight Line:

A linear relation can be represented **graphically** as a straight line because a change in the independent variable causes a corresponding change in the dependent variable at a **constant** rate.

1. Which of the following graphs shows a linear relationship?

Linear Relation as a First Degree Equation:

A linear relation can be represented **algebraically** as a first degree equation where the highest exponent of the variables in the equation is 1.

Some examples of linear equations are 3x + 4y = 9, y = -3x + 6, or x - 5y - 11 = 0.

2. Which of the following are linear equations?

(a) y = 2x + 5(b) $y = 2x^3$ (c) 2x + 6y - 8 = 0(d) $y = x^2 + 5x - 3$ (e) $y = 3^x$ (f) 3x - 7y = 1(g) y = 2(h) x = 0

Linear Relation Has Constant First Differences (Rate of Change):

A linear relation can also be determined by calculating the first differences from its table of values. The first differences of a linear relation are constant.

3. Which of the following tables of value does not represent a linear relation?

	_	B.	-	-	C.	-	-	D.		
x	у		x	у	с.	x	у	21	x	у
1	3		0	12		-2	60		1	2
2	6		2	5		1	48		2	4
3	9		4	-2		4	36		3	8
4	12		6	-9		7	24		4	16

AChor/MFM2P

Forms of Linear Equations

Linear equations can be expressed in many different forms. The two common forms are:

(i) **Standard Form:** Ax + By + C = 0,

where A, B, C are integers. A and B are not both zero, A is positive.

- 4. Which of the following linear equations are not in the standard form, Ax + By + C = 0?
- (a) 2x y + 6 = 0 (b) -6x 15 3y = 0 (c) 2x + 5y + 4 = 2 (d) x + 3 = 0
- (e) $7x \frac{1}{2}y + 1 = 0$ (f) 3y + 4x + 1 = 0 (g) -3x + y 1 = 0 (h) x 9y + 15 = 0

(ii) **Slope-Intercept Form:** y = mx + b

where *m* is the slope of the line, and *b* is the *y*-intercept of the graph of the line.

The coefficient "*m*" of the independent variable "*x*" is the slope and also the **rate of change**.

The *y*-intercept "*b*" is the *y*-coordinate of the point at which the line cuts the *y*-axis. It is the value of the dependent variable "*y*" when the independent variable "*x*" is 0.

Special Cases:

- Some in the form y = b, where b is the y-intercept. The slope of a horizontal line is zero.
- Vertical Line: A vertical line is written in the form x = a, where *a* is the *x*-intercept. The slope of a vertical line is undefined.

The *x*-intercept "*a*" is the *x*-coordinate of the point at which the line cuts the *x*-axis.

5. Arrange the following lines from the steepest to the flattest.

(a)
$$y = -2x + 5$$
 (b) $y = \frac{3}{5}x + 9$ (c) $y = 6x - 4$ (d) $y = -10x + 7$ (e) $y = 20$

AChor/MFM2P

6. Write the equation of each line.

(b)

(c)

V K 0 2 4 6

Slope = m =

y-intercept = b =

Equation of the line: y = mx + b =

Slope = m =

y-intercept = b =

Equation of the line: y = mx + b =

Slope = m =

y-intercept = b =

Equation of the line: y = mx + b

(d)

	У		
	2		
+	0	2	4×
	2		
	¥		

Slope = m =

y-intercept = b =

Equation of the line: y = mx + b =

у

2

0

AChor/MFM2P

The Equation of a Line in Slope-Intercept Form: y = mx + bSlope y-intercept

In Algebra language: Slope = m = Coefficient of x; y - intercept = b = Constant Term

7. For the following linear equations, state the slope and *y*-intercept of each line.

(a) $y = 3x - 5$	Slope:	y-intercept:
(b) $y = \frac{4}{3}x - 7$	Slope:	y-intercept:
(c) $y = -0.6x + 3.7$	Slope:	y-intercept:
(d) $y = -x$	Slope:	y-intercept:
(e) $y = 6 + x$	Slope:	y-intercept:

- 8. State whether the slope of each line is positive, negative, 0 or undefined.
- (a) y = 2x + 5(b) y = -0.5x + 2(c) y = 4 - 3x(d) y = 7
- (e) x = 4 (f) y = -4 + 9x
- 9. Match each line to its equation.
- (a) y = 4
- **(b)** y = -x
- (c) y = 2x 5
- (d) y = x
- (e) $y = \frac{1}{2}x + 7$

Answers: 1. c; 2. a, c, f, g, h; 3. d; 4. b, c, e, f, g; 5. d, c, a, b, e;
6. (a)
$$y = \frac{2}{3}x - 5$$
, (b) $y = -2x + 3$, (c) $y = 4$, (d) $x = 2$; 7. (a) $m = 3, b = -5$, (b) $m = \frac{4}{3}, b = -7$,
(c) $m = -0.6, b = 3.7$, (d) $m = -1, b = 0$, (e) $m = 1, b = 6$; 8. (a) B, (b) D, (c) C, (d) A, (e) E

WS 4-3