8.1.1: Going Around the Curve

Experiment A

A particular mould grows in the following way: If there is one "blob" of mould today, then there will be 4 tomorrow, 9 the next day, 16 the next day, and so on.
Model this relationship using linking cubes.

Purpose

Find the relationship between the side length and the number of cubes.

Hypothesis

What type of relationship do you think exists between the side length and the number of cubes?

Procedure

1. Build the following sequence of models, using the cubes.

2. Build the next model in the sequence.

Mathematical Models

Complete the table, including first and second differences. Make a scatter plot and a line of best fit.

8.1.2: Going Around the Curve

Experiment B

Jenny wants to build a square pool for her pet iguana. She plans to buy tiles to place around the edge to make a full play area for her pet.
Model the relationship, comparing total play area (pool combined within the edging) to the side length of the pool, using linking cubes.

Purpose

Find the relationship between the side length of the pool (shaded inside square) and the total play area.

Hypothesis

What type of relationship do you think exists between the side length and the play area?

Procedure

1. Build the following sequence of models using the cubes.

Note: The pool is the shaded square, the tiles are white.

2. Build the next model in the sequence.

Mathematical Models

Complete the table, including first and second differences. Make a scatter plot and a line of best fit.

8.1.3: Going Around the Curve

Experiment C

A particular mould grows in the following way: If there is one "blob" of mould today, then there will be 3 tomorrow, and 6 the next day.
Model this relationship using linking cubes.

Purpose

Find the relationship between the number of cubes in the bottom row and the total number of cubes.

Hypothesis

What type of relationship do you think exists between the number of cubes in the bottom row and the total number of cubes?

Procedure

1. Build the following sequence of models using the cubes.

2. Build the next model in the sequence.

Mathematical Models

Complete the table, including first and second differences. Make a scatter plot and a line of best fit.

8.1.4: Going Around the Curve

Experiment D

Luisa is designing an apartment building in a pyramid design. Each apartment is a square. She wants to know how many apartments can be built in this design as the number of apartments on the ground floor increases.
Model this relationship, using linking cubes.

Purpose

Find the relationship between the number of cubes in the bottom row and the total number of cubes.

Hypothesis

What type of relationship do you think exists between the number of cubes in the bottom row and the total number of cubes?

Procedure

1. Build the following sequence of models using the cubes.

2. Build the next model in the sequence.

Mathematical Models

Complete the table, including first and second differences. Make a scatter plot and a line of best fit.

8.1.5: Going Around the Curve

Experiment E

Liz has a beautiful pond in her yard and wants to build a tower beside it using rocks. She is unsure how big she will make it and how many rocks she will need. She is particularly concerned to have the nicest rocks showing.
Model the relationship comparing the length of the base to the number of visible rocks using linking cubes.

Purpose

Find the relationship between the number of cubes on the side of the base and the total number of unhidden cubes.

Hypothesis

What type of relationship do you think exists between the length of the side of the base and the number of visible cubes?

Procedure

1. Build the following sequence of models using the cubes.

2. Build the next model in the sequence.

Mathematical Models

Complete the table, including first and second differences.
Make a scatter plot and a line of best fit.

