\qquad
Date: \qquad

Worksheet 6-5: Solving Linear Systems by Elimination

We can also solve a system of linear equations by the method of elimination which involves eliminating one of the variables by adding or subtracting the two equations.
FIRST identify the variable to be eliminated
Practice: Adding two linear equations (When you have "opposite" signs)

1. (a)

$$
x+y=10
$$

$2 x-y=5$
(b) $\quad 2 x+3 y=12$
$-2 x-5 y=-8$

Practice: Subtracting two linear equations (When you have "same" signs)
2. (a)
$-x+13 y=-22$
$-x-15 y=6$
(b) $\quad \begin{aligned}-5 x-7 y & =27 \\ 2 x-7 y & =20\end{aligned}$

Eliminating by Addition then Solve (When you have "opposite" signs)

Step 1: Eliminate one of the variables by adding or subtracting to create an equation with only one variable. (**Multiply the equation(s) to eliminate terms if necessary.)
Step 2: Solve for the remaining variable.
Step 3: Substitute the value for x or y back into one of the original equations to determine the value of the other variable.
3.

$$
3 x+y=19
$$

$4 x-y=2$

AChor/MFM2P

Name: \qquad
4. $x+2 y=9$
$4 x-2 y=-4$
5. $-4 x-2 y=-12$
$4 x+8 y=-24$
6. $-6 x+5 y=1$
$6 x+4 y=-10$

Answers: 1. (a) $3 x=15, x=5$, (b) $-2 y=4, y=-2$; 2. (a) $28 y=-28, y=-1$, (b) $-7 x=7, x=-1$;
3. The solution is $(3,10) ; 4$. The solution is $(1,4) ; 5$. The solution is $(6,-6)$;
6. The solution is $(-1,-1)$
\qquad

Eliminating by Subtraction then Solve (When you have same signs)

Step 1: Eliminate one of the variables by adding or subtracting to create an equation with only one variable. (**Multiply the equation(s) to eliminate terms if necessary.)
Step 2: Solve for the remaining variable.
Step 3: Substitute the value for x or y back into one of the original equations to determine the value of the other variable.
7. $3 x-4 y=14$
$3 x+7 y=-8$
8. $7 x+2 y=24$
$8 x+2 y=30$
9. $-2 x-9 y=-25$
$-4 x-9 y=-23$

AChor/MFM2P

Name: \qquad
Date: \qquad

"Multiply" before Elimination

When there are no common coefficients in the given equations, it is necessary to write the original equations into equivalent equations by multiplying one or both equations by a constant or number first in order to eliminate terms by addition or subtraction.
$5 x+y=9$
10. $10 x-7 y=-18$

$$
\text { 11. } \begin{aligned}
& 4 x-2 y=6 \\
& x+y=6
\end{aligned}
$$

12. $3 x+2 y=28$
$5 x-3 y=15$
13. $-4 x-2 y=14$
$-10 x+7 y=-25$

Answers: 7. The solution is $(2,-2)$; $\mathbf{8}$. The solution is $(6,-9)$; 9 . The solution is $(-1,3)$;
10. The solution is $(1,4) ; \mathbf{1 1}$. The solution is $(3,3) ; \mathbf{1 2}$. The solution is $(6,5)$;
13. The solution is $(-1,-5)$

