Right Angle Triangles and the Tangent Ratio Worksheet

Calculate the tangent of the following angles to two decimal places.

1. $\tan 10^{\circ}$
2. $\tan 73^{\circ}$

Find $\angle \mathbf{C}$ to the nearest degree.
3. $\tan C=0.439$
4. $\tan C=2.156$
5. Using the following triangle, calculate tan \boldsymbol{J} to two decimal places.

6. Calculate $\angle \mathbf{A}$ and $\tan \mathbf{A}$ for the following triangle. Round the angle measurement to the nearest degree and calculate the tan to two decimal places.

10. There is a bike ramp at the park. The incline of the ramp is 49°. The height of the ramp is 0.8 m . What is the distance Colin will travel on the ramp with his bike?

$\tan =\frac{\mathrm{opp}}{\mathrm{adj}} \quad \tan 49=\frac{0.8}{\mathrm{x}} \quad 1.15=\frac{0.8}{\mathrm{x}} \quad(1.15) \mathrm{x}=0.8 \quad \mathrm{x}=\frac{0.8}{1.15}$
$x=0.70 \mathrm{~cm}$
7. Find the measurement of the missing side of the triangle to the nearest tenth of a metre.

8. Find the measurement of the missing side of the triangle to the nearest tenth of a metre.

9. In a right angle triangle, the side adjacent to the 17° angle is 9 cm long. What is the length of the side opposite the 17° angle to the nearest centimetre?

Subject: Math Unit: Trigonometry

Lesson: Two
10. There is a bike ramp at the park. The incline of the ramp is 49°. The height of the ramp is 1.2 m . What is the distance Colin will travel on the ramp with his bike?

Right Angle Triangles and the Tangent Ratio Worksheet Solutions

Calculate the tangent of the following angles to two decimal places.

1. $\tan 10^{\circ}=\mathbf{0 . 1 8}$
2. $\tan 73^{\circ}=3.27$

Find $\angle \mathbf{C}$ to the nearest degree.
3. $\tan C=0.439 \quad \angle \mathbf{C}=24^{\circ}$
4. $\tan C=2.156 \quad \angle C=65^{\circ}$
5. Using the following triangle, calculate tan \mathbf{J} to two decimal places.

$\tan \mathrm{J}=\frac{\text { opposite }}{\text { adjacent }} \quad \tan \mathrm{J}=\frac{5 \mathrm{~cm}}{4 \mathrm{~cm}} \quad \tan \mathrm{~J}=1.25$

Subject: Math
Unit: Trigonometry
Lesson: Two
6. Calculate $\angle \mathrm{A}$ and $\tan \mathrm{A}$ for the following triangle. Round the angle measurement to the nearest degree and calculate the tan to two decimal places.

$\tan A=\frac{\text { opposite }}{\text { adjacent }} \quad \tan A=\frac{15}{8} \quad \tan A=1.875 \quad \angle A=62^{\circ}$
7. Find the measurement of the missing side of the triangle to the nearest tenth of a metre.

$$
\tan =\underline{\text { opp }} \tan 58=\underline{x} \quad 1.60=\underline{x} \quad 1.60(6)=9.6 \quad x=9.6 \mathrm{~cm}
$$

Subject: Math
Unit: Trigonometry
Lesson: Two
8. Find the measurement of the missing side of the triangle to the nearest tenth of a metre.

$$
\begin{aligned}
& \tan =\frac{\mathrm{opp}}{\mathrm{adj}} \quad \tan 41=\frac{x}{10} \quad 0.87=\frac{x}{10} \quad x=0.87(10) \\
& x=8.7 \mathrm{~cm}
\end{aligned}
$$

9. In a right angle triangle, the side adjacent to the 17° angle is 9 cm long. What is the length of the side opposite the 17° angle to the nearest centimetre?

$\tan 17=\frac{\text { opp }}{\mathrm{adj}} \quad \tan 17=\frac{\mathrm{x}}{9} \quad 0.31=\frac{x}{9} \quad x=0.31(9)=2.79$
$x=3 \mathrm{~cm}$
